{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Tutorial: Processing Eye-Tracking Data with PyNeon\n", "\n", "## Step 1: Loading Sample Data\n", "\n", "First, we'll load sample eye-tracking data provided by PyNeon." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from pyneon import NeonRecording, get_sample_data\n", "from pyneon.preprocess import *\n", "\n", "# Load the sample recording\n", "recording_dir = get_sample_data(\"OfficeWalk\") / \"Timeseries Data\" / \"walk1-e116e606\"\n", "recording = NeonRecording(recording_dir)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2: Constructing Event Times\n", "\n", "We'll create a list of event times from 0 to 100 seconds at intervals of 0.1 seconds. These events will serve as reference points for creating epochs." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " t_ref t_before t_after description\n", "0 1.725032e+18 100000000.0 500000000.0 test_event\n", "1 1.725032e+18 100000000.0 500000000.0 test_event\n", "2 1.725032e+18 100000000.0 500000000.0 test_event\n", "3 1.725032e+18 100000000.0 500000000.0 test_event\n", "4 1.725032e+18 100000000.0 500000000.0 test_event\n" ] } ], "source": [ "# Create a list of event times from 0 to 100 seconds at 0.1-second intervals\n", "tlist = np.arange(0, 100, 0.1)\n", "global_ref_time = recording.start_time\n", "\n", "# Construct event times DataFrame\n", "event_times = construct_event_times(\n", " t_refs=tlist,\n", " t_before=0.1, # 0.1 seconds before the event\n", " t_after=0.5, # 0.5 seconds after the event\n", " description=\"test_event\",\n", " global_t_ref=global_ref_time,\n", " time_unit=\"s\", # Specify that t_refs are in seconds\n", ")\n", "\n", "# Display the first few event times\n", "print(event_times.head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3: Verifying Event Intervals\n", "\n", "Check the average interval between events to confirm they are correctly spaced." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Average interval between events: 100000000.0 nanoseconds\n" ] } ], "source": [ "# Calculate the average difference between subsequent event times\n", "average_interval = np.mean(np.diff(event_times[\"t_ref\"]))\n", "\n", "print(f\"Average interval between events: {average_interval} nanoseconds\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This confirms that events are spaced 0.1 seconds (100,000,000 nanoseconds) apart.\n", "\n", "## Step 4: Creating Epochs from the Data\n", "\n", "Use the create_epoch function to create epochs from the gaze data based on the event times." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# Create epochs from the gaze data\n", "epochs_df, annotated_data = create_epoch(recording.gaze.data, event_times)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "epoch id 29\n", "t_ref 1725032224427000064\n", "t_before 100000000.0\n", "t_after 500000000.0\n", "description test_event\n", "epoch data timestamp [ns] gaze x [px] gaze y [p...\n", "Name: 0, dtype: object\n" ] } ], "source": [ "print(epochs_df.iloc[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Every row in the epochs_df file has information about the epoch as well as the data assigned to this epoch. " ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "timestamp [ns] 1725032224852161732\n", "gaze x [px] 1067.486\n", "gaze y [px] 620.856\n", "worn True\n", "fixation id 1\n", "blink id \n", "azimuth [deg] 16.21303\n", "elevation [deg] -0.748998\n", "time [s] 0.0\n", "epoch id 34\n", "description test_event\n", "t_rel -74838272.0\n", "Name: 0, dtype: object\n" ] } ], "source": [ "print(annotated_data.iloc[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On the other hand, annotated data has the information about the current epoch appended at the end.\n", "\n", "Alternatively, an epoch object can also be created without an event_times object but rather the info needed to create one" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "epochs_df, annotated_data = create_epoch(\n", " recording.gaze.data,\n", " times_df=None,\n", " t_refs=tlist,\n", " t_before=0.1,\n", " t_after=0.5,\n", " global_t_ref=global_ref_time,\n", " time_unit=\"s\",\n", " description=\"test_event\",\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This object is equivalent to the ones created before" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 5: Initializing the Epoch Class\n", "\n", "Initialize the Epoch class with the gaze data and event times." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "# Initialize the Epoch object\n", "\n", "epochs = Epoch(recording.gaze.data, event_times)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 6: Converting Epochs to NumPy Array\n", "\n", "Convert the epochs into a NumPy array, specifying the columns of interest" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "NaN values were found in the data.\n", "Column IDs: ['gaze x [px]', 'gaze y [px]']\n", "Time relative to reference (s): [-0.1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0. 0.01\n", " 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13\n", " 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25\n", " 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37\n", " 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49\n", " 0.5 ]\n", "Shape of epochs array: (955, 61, 2)\n" ] } ], "source": [ "# Convert epochs to NumPy array, selecting specific columns\n", "ep_np, info = epochs.to_numpy(columns=[\"gaze x [px]\", \"gaze y [px]\"])\n", "\n", "# Display information about the epochs\n", "print(\"Column IDs:\", info[\"column_ids\"])\n", "print(\"Time relative to reference (s):\", info[\"t_rel\"] * 1e-9)\n", "print(\"Shape of epochs array:\", ep_np.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Column IDs: The data channels extracted.\n", "Times: The common time grid for all epochs.\n", "Shape: Indicates there are 1000 epochs, each with 61 time points and 2 data channels.\n", "\n", "## Step 7: Averaging Across Epochs\n", "\n", "Compute the average across all epochs to get the mean time-series." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape after averaging across epochs: (61, 2)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\jan-gabriel.hartel\\AppData\\Local\\Temp\\ipykernel_12180\\2544218633.py:2: RuntimeWarning: Mean of empty slice\n", " integrated_epochs = np.nanmean(ep_np, axis=0)\n" ] } ], "source": [ "# Average across epochs (resulting in a 2D array)\n", "integrated_epochs = np.nanmean(ep_np, axis=0)\n", "print(\"Shape after averaging across epochs:\", integrated_epochs.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The resulting array has 61 time points and 2 channels.\n", "\n", "## Step 8: Averaging Over Time\n", "\n", "Further, average over time to get a single value per channel." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Averaged values over time: [784.02903257 539.72164082]\n" ] } ], "source": [ "# Average over time (resulting in a 1D array)\n", "integrate_in_time = np.nanmean(integrated_epochs, axis=0)\n", "print(\"Averaged values over time:\", integrate_in_time)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "his gives the overall mean for each data channel.\n", "\n", "## Conclusion\n", "\n", "In this tutorial, we've demonstrated how to:\n", "\n", "- Load sample eye-tracking data using PyNeon.\n", "- Construct event times for epoching the data.\n", "- Create epochs from continuous gaze data.\n", "- Convert epochs into a NumPy array for analysis.\n", "- Perform averaging across epochs and over time.\n", "\n", "These steps are essential for preprocessing eye-tracking data and can be extended for more advanced analyses." ] } ], "metadata": { "kernelspec": { "display_name": "pyneon", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.5" } }, "nbformat": 4, "nbformat_minor": 2 }